Abstract

Nowadays we can find many TCP/IP based network applications, such as: WWW, e-mail, video-conferencing, VoIP, remote accesses, telnet, p2p file sharing, etc. All mentioned applications became popular because of fast-spreading broadband internet technologies, like xDSL, DOCSIS, FTTH, etc. Some of the applications, such as VoIP (Voice over Internet Protocol) and video-conferencing, are more time-sensitive in delivery of network traffic than others, and need to be treated specially. This special treatment of the time-sensitive applications is one of the main topics of this chapter. It includes methodologies for providing a proper quality of service (QoS) for VoIP traffic within networks. Normally, their efficiency is intensively tested with simulations before implementation. In the last few years, the use of simulation tools in R&D of communication technologies has rapidly risen, mostly because of higher network complexity. The internet is expanding on a daily basis, and the number of network infrastructure components is rapidly increasing. Routers are most commonly used to interconnect different networks. One of their tasks is to keep the proper quality of service level. The leading network equipment manufacturers, such as Cisco Systems, provide on their routers mechanisms for reliable transfer of time-sensitive applications from one network segment to another. In case of VoIP the requirement is to deliver packets in less than 150ms. This limit is set to a level where a human ear cannot recognize variations in voice quality. This is one of the main reasons why leading network equipment manufacturers implement the QoS functionality into their solutions. QoS is a very complex and comprehensive system which belongs to the area of priority congestions management. It is implemented by using different queuing mechanisms, which take care of arranging traffic into waiting queues. Time-sensitive traffic should have maximum possible priority provided. However, if a proper queuing mechanism (FIFO, CQ, WFQ, etc.) is not used, the priority loses its initial meaning. It is also a well-known fact that all elements with memory capability involve additional delays during data transfer from one network segment to another, so a proper queuing mechanism and a proper buffer length should be used, or the VoIP quality will deteriorate. If we take a look at the router, as a basic element of network equipment, we can realise that we are dealing with application priorities on the lowest level. Such level is presented by waiting queues and queuing mechanisms, related with the input traffic connection interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call