Abstract

AbstractThe electrical properties such as interface energy barriers, defect energy levels, and densities dictate the performance of thin film solar cells. Here, we show that these properties can be quantified in cadmium telluride (CdTe) thin‐film solar cells using admittance spectroscopy‐based techniques. Our results reveal that the electrical properties in CdTe thin‐film solar cells depend on both buffer material and the fabrication atmosphere. We find that only a negligible front contact barrier exists at the CdS/CdTe front junction regardless of the fabrication atmospheres, while an obvious front barriers are observed at the ZnMgO (ZMO)/CdTe junctions. Both CdS/CdTe and ZMO/CdTe solar cells exhibit back contact barrier. The energy level of defects is shallower in CdS/CdTe cells than in ZMO/CdTe cells. The fabrication atmosphere influences the electrical properties, i.e., an oxygen‐free atmosphere reduces the front and back barrier heights and lowers the energy level of defects. The results provide critical insights for understanding and optimizing the performance of CdTe thin‐film solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.