Abstract

Impacts of defoliation on the growth and physiology of sugar maple (Acer saccharum Marsh.) and trembling aspen (Populus tremuloides Michx.) were examined in ambient and CO2‐enriched atmospheres. Saplings were grown for 70 d in controlled environments, wherein CO2 mole fractions averaged either 356 μmol mol−1 or 645 μmol mol−1, under a PPF of 500 μmol m−2 s−1. On day 49 of the study, 50% of the leaf area was removed from a subset of each species in both CO2 environments. Relative growth rate (rgr) and its physiological and morphological determinants were monitored before and after defoliation. For non‐defoliated saplings of both species, a slight stimulation of rgr (c. 5%) in elevated CO2 led to a modest increase (9–11%) in final sapling weight. In the case of maple, the minimal growth response corresponded with minor CO2 effects on specific leaf area (sla) and leaf weight ratio (lwr), and an apparent CO2‐induced down‐regulation of photosynthetic metabolism. For aspen, the CO2 stimulation of photosynthesis was largely offset by a decrease in sla. Responses to defoliation differed markedly between species and CO2 environments. Defoliation decreased maple rgr in ambient CO2, whereas the opposite occurred in elevated CO2. The latter led to complete recovery of plant weight (compensation), and was attributed to a defoliation‐induced increase in carbon allocation to new leaves, along with a reversal of photosynthetic CO2 acclimation in that foliage. In both environments, aspen rgr increased after defoliation, facilitating almost full compensation. Defoliation increased light penetration into the aspen canopy, and it was estimated that the resultant stimulation of photosynthesis in lower leaves would have more than offset the concomitant decrease in lwr. CO2 enrichment might substantially enhance the ability of certain tree species to recover from herbivory. Moreover, responses to elevated CO2 might be largest in the presence of stresses, such as herbivory, that decrease plant source∶sink ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.