Abstract

Some molecular dynamics simulations focusing on the interactions between graphene films and water droplets are carried out in this article to investigate the fluid–solid interfacial behavior of surface wettability. The wettability of an ideal graphene film is investigated at room temperature at the beginning of the simulations, then the influences of ambient temperature, surface fluctuation and charge density of the graphene film on the wetting behaviors of water droplets on the film are also discussed from three points of view, namely the interaction energy of the graphene and the water droplet, the mass density of water and the water contact angle on the graphene film. The simulation results indicate that the ideal graphene film is slightly hydrophobic and that both the ambient temperature and the fluctuation of the graphene film play a negative role during the wetting processes. The observations also show that, once charged, the wetting property of graphene changes massively, from slightly hydrophobic to super-hydrophilic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.