Abstract

Influences of aging precipitation of Cr2N and Chi (χ) phases on the resistance to pitting corrosion and intergranular corrosion of 18Cr-18Mn-2Mo-0.77N high nitrogen steel (HNS) as a type of fundamental and structural materials were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) pattern and electrochemical methods. Intergranular, cellular Cr2N and χ phases precipitate gradually along grain boundaries and inward grains. The volume fraction of precipitation presents a C-curve with a nose temperature of 850°C during 2h aging treatment. The solution-treated (ST) HNS exhibits the highest pitting corrosion potential because of high nitrogen content in steel, and especially no precipitation. The pitting corrosion resistance of aged HNS decreases because of the formation of aging precipitation which results in the depletion of Cr and Mo in the matrix. The pitting corrosion potentials firstly decrease then increase as the same tendency as the amount of precipitation expect 850°C and 900°C. Double loop electrochemical potentiokinetic reaction (DL-EPR) results show that the change tendency of IGC susceptibility is well consistent with the amount of precipitation of aged HNS for 2h at various temperatures. With prolonging the aging time at 850°C, aged HNS presents more obviously intergranular sensitization due to the formation of aging precipitation which results in the depletion of Cr and Mo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.