Abstract

Numerical investigations were carried out for natural and mixed convection within domains with stationary and rotating complex geometry by using an immersed-boundary method. The method was first validated with flows induced by natural convection in the annulus between concentric circular cylinder and square enclosure, and the grid-function convergence tests were also examined. Natural convection induced by isothermally elliptic cylinder was further investigated for different Rayleigh numbers within the range of 104–106 and the influence of the outer enclosure was also considered. The parameters investigated in the study included Rayleigh number, axis ratio and inclination angle of the elliptic cross-section. Local and average heat transfer characteristics were fully studied around the surfaces of both inner cylinder and outer enclosure. Finally, mixed convection in a square enclosure with an active rotating elliptic cylinder was considered and the heat transfer quantities of the system were obtained for different rotating speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.