Abstract

Atmospheric deposition provides a stable iron source for peatlands. The influences of Fe input on methane (CH4) productions and the underlying mechanisms remain unclear. We conducted a microcosm experiment with peat sediments collected from the Qinghai-Tibet Plateau of China to explore the effects of ferrihydrite reductionfor CH4 productions in peatlands by using geochemical analyses including 57Fe Mössbauer spectroscopy and three-dimensional fluorescence spectroscopy (3D-EEM) in combination with high-throughput sequencing of 16S rRNA and real-time fluorescence quantitative PCR (qPCR). Results showed that ferrihydrite reduction significantly increased CH4 production, being 30 times of that under the control. Selective extractions for iron oxides and 57Fe Mössbauer spectroscopy measurements revealed that no crystalline secondary iron minerals were formed during the ferrihydrite reduction process. The addition of ferrihydrite enhanced the degradation of dissolved organic matter (DOM) in peat soil, resulting in a reduction in the concentration of dissolved organic carbon (DOC). Furthermore, the relative abundance of typical fermentative microorganisms in peat sediments, including Acidobacteriota and Bacteroidota, significantly increased. Such a result indicated that reduction of ferrihydrite accelerated organic matter decomposition and increased substrate concentration required for methanogenesis. Furthermore, a co-increase in relative abundance of Geobacter, Geothrix, and Methanobacterium in the ferrihydrite-amended group suggested a potential synergistic interaction that may promote the CH4 production. Our results demonstrated that ferrihydrite reduction could significantly enhance CH4 production and play a vital role in regulating CH4 emissions in peatlands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.