Abstract

An explanation of the deviation from the parabolic law is the treatment which considers both shortcircuit and lattice diffusion in the oxide scale. In this study we examine how the oxidation kinetics are influenced by changing the structure of the scale of copper oxide in order to confirm the role of short-circuit diffusion in determining the oxidation rate. In addition we explain the oxidation kinetics of copper and nickel by using a model of the scale structure which includes recrystallization and grain growth. Results are as follows: (1) The nucleation and growth behavior of oxide have a direct effect on the structure and in turn the oxidation kinetics due to short-circuit diffusion. (2) A modified treatment is valid in the region where volume diffusion and short-circuit diffusion play an important role in which it is necessary to consider the scale structure such as the grain size distribution and the boundary width. (3) When recrystallization takes place it is necessary to consider the model of a two-layered scale structure which is different in properties and morphology. (4) In this region the rate curves are S-shaped when oxide recrystallization takes place and exhibit a transition from a parabolic to an nth-power relationship (n>2) when grain growth takes place.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call