Abstract

The oxidation of AISI 316L(NG) stainless steel in simulated pressurised water reactor (PWR) coolant with or without addition of 1 ppm Zn at 280 °C for up to 96 h has been characterised in situ by electrochemical impedance spectroscopy (EIS), both at the corrosion potential and under anodic polarisation up to 0.5 V vs. the reversible hydrogen electrode (RHE). Additional tests were performed in simulated PWR coolant with the addition of 0.01 M Na 2B 4O 7 to exclude the effect of pH excursions probably due to Zn hydrolysis reactions. The thickness and in-depth composition of the oxide films formed at open circuit and at 0.5 V vs. RHE in the investigated electrolytes have been estimated from X-ray photoelectron spectroscopy (XPS) depth profiles. The kinetic and transport parameters characterising the oxide layer growth have been estimated using a calculational procedure based on the mixed conduction model for oxide films. Successful simulations of both the EIS and XPS data have been obtained. The parameter estimates are discussed in terms of the effect of Zn on the oxide layers on stainless steel in PWR conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.