Abstract

The object of the present study was to determine the influence of zeolite A, a calcium binder from the group of the aluminosilicate, on feed intake, macro and trace element metabolism as well as the milk yield in the following lactation in dairy cows. 46 cows were allotted to 2 groups (A--control group and B--experimental group). They were fed a total mixed ration (TMR) ad libitum 2 weeks before calving. Additionally the cows in group B received 90 g zeolite A/kg dry matter (DM). The individually feed intake was registered daily. The serum was analysed for Ca, Mg, and Pi (inorganic phosphate), Fe, FFA (free fatty acid) and beta-HB (hydroxybutyrate) and the plasma for the trace elements Cu, Zn, and Mn. After calving the milk yield (FCM) and the milk composition (fat, protein, lactose and urea) were analysed. Feed intake of group B, amounting to 6.2 +/- 1.3 kg DM/d was around 48% lower as compared to 12.0 +/- 1.4 kg DM/d for group A. The zeolite addition into the TMR showed a stabilizing effect on the average Ca concentration in the serum around calving. This effect led to a significantly lower Mg concentration on the day of calving and 1 day post partum. The Pi concentration was significantly lower already after the 1st week of zeolite supplementation and on the day of calving as compared to group A. There was no essential effect of zeolite A on the trace element concentration. The depression of feed intake for group B led to a significant increase of FFA one week after beginning zeolite supplementation and of beta-HB around calving. The feed intake post partum as well as the milk yield were not affected by zeolite supplementation. Because decreased feed intake of group B after zeolite supplementation and the occurred hypophosphatemia, it is not acceptable to use zeolite A in the proved dose for preventing milk fever.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.