Abstract
The present study investigates the influence of the content of Y2O3–Al2O3 sintering additive on the sintering behavior and microstructure of Si3N4 ceramics. The Y2O3:Al2O3 ratio was fixed at 5:2, and sintering was conducted at temperatures of 1300°–1900°C. Increased sintering‐additive content enhanced densification via particle rearrangement; however, phase transformation and grain growth were unaffected by additive content. After phase transformation was almost complete, a substantial decrease in density was identified, which resulted from the impingement of rodlike β‐Si3N4 grain growth. Phase transformation and grain growth were concluded to occur through a solution–reprecipitation mechanism that was controlled by the interfacial reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.