Abstract

Fabric preforms undergo transverse compaction during composite manufacturing. This compaction changes the preform thickness, fibre volume fraction (FVF), tow geometry and voids for resin flow. In this paper, influence of yarn hybridisation and fibre architecture on the compaction response of woven fabric preforms has been studied. A series of cyclic compression tests have been carried out on both dry and wet preforms. The effect of hybridisation on compressibility has been investigated for single as well as multilayer fabrics. The influence of interlacement pattern (twill and satin fabrics) with hybrid yarns has also been investigated. Nesting efficiencies of multilayer stacks have been studied by utilising mechanical test results. Additionally, the meso-structure of single and multilayer fabrics under 1 bar pressure has been analysed using SEM images. It is observed that the thickness reduction for single layer twill hybrid fabric is 38% while thickness reduction for twill S-glass fabric is 67% at 100 kPa. Moreover, single layer hybrid twill fabrics have shown higher compressibility resistance (60% thickness reduction at 100 kPa) compared to single layer hybrid satin fabrics (which showed 67% thickness reduction at 100 kPa). Whereas opposite trend is observed for multilayer hybrid fabrics due to nesting effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call