Abstract

BackgroundThe anaesthetic xenon shows potent organ-protective properties. Due to high density and dynamic viscosity, peak inspiratory pressure (Pmax) increases during xenon application. Thus, barotrauma may counteract organ protection. Accordingly, we investigated the influence of xenon on lung mechanics and lung aeration in patients with normal and reduced thoracic wall compliance. MethodsAfter registration and ethical approval, 20 patients free of pulmonary disease undergoing routine xenon-based anaesthesia were mechanically ventilated. The primary outcome variable transpulmonary pressure (Ptp) was determined from plateau pressure and intraoesophageal pressure before and after xenon wash-in. We recorded Pmax, and calculated airway resistance (RAW), and static (Cstat) and dynamic (Cdyn) respiratory compliances. Finally, lung aeration was quantified by electrical impedance tomography-derived centre of ventilation index (CVI) and global inhomogeneity index (GI) in the awake state, before and during xenon. ResultsXenon increased Pmax [20.8 (SD 3) vs 22.6 (3) cm H2O, P<0.001] and RAW [0.9 (0.2) vs 1.4 (0.3) cm H2O litre−1 s, P<0.001], without affecting Ptp [1.5 (4) vs 2.0 (4) cm H2O, P=0.15]. While Cstat remained unchanged, Cdyn was reduced [33.9 (7) vs 31.2 (6) ml (cm H2O)−1, P<0.001). A ventral tidal volume shift after anaesthesia induction [CVI 0.53 (0.03) vs 0.59 (0.04), P<0.001] was unaltered during xenon [CVI 0.59 (0.04), P=0.29]. Homogeneity of lung aeration was also unchanged during xenon [GI 0.37 (0.03) vs 0.37 (0.03), P=0.99]. There were no clinically meaningful differential BMI-related effects. ConclusionsXenon increases calculated airway resistance and peak inspiratory pressure without affecting transpulmonary pressure, independent of BMI. Clinical trial registrationNCT02682758.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.