Abstract

In this work, the influence of x-ray radiation on the properties of magnetorheological elastomers (MREs) was experimentally investigated. Five MRE samples with the same composition were prepared, and then were irradiated by an x-ray detection machine, with different radiation doses. The microstructures of samples before and after x-ray irradiation were observed by using scanning electron microscopy. The dynamic mechanical properties of all samples were investigated under different magnetic flux densities. The experimental results indicated that the x-rays had a great impact on the properties of MRE. Due to the x-ray radiation, two kinds of radiation-induced effects were generated in the MRE, which were radiation-induced crosslinking and radiation-induced degradation. Based on the influence of the radiation-induced effects on MRE, the initial modulus of the MRE was increased by the radiation-induced crosslinking effect, but the MR effect of the MRE decreased. While the MRE began to degrade, the MR effect of the MRE exhibited a large increasing trend with the increase of the x-ray radiation dose. In addition, the damping property of the MRE was also influenced greatly by the x-ray radiation, and the loss factor of the MRE was increased dramatically first and then decreased under x-ray irradiation. On the basis of these results, this study may provide a good guideline for developing various applications of MREs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call