Abstract
High frequency (HF) radio band is important for the long-range communications and over-the-horizon surveillance, particularly in the polar cap region where the ground infrastructure may be limited. However, the space weather events drastically affect the high frequency radio wave propagation so that the ability to provide now-casting and forecasting of HF radio wave absorption is important for users relying on the HF communications. During the space weather events such as solar proton events and X-ray flares the high-latitude ionosphere becomes a particularly efficient absorber of HF radio waves. There is therefore a need to develop accurate HF propagation prediction services. Absorption of the HF field caused by the X-ray flux, Solar Ultra-Violet flux and proton precipitations is investigated in this paper for the event of the solar flare observed on 11 April 2013. The effects of the X-ray flux and proton precipitations on the structure of the vertical and oblique ionograms for different latitudes are estimated. The simulation of the vertical and oblique ionograms was performed on the basis of the computational model of the ionosphere oriented to applications into the high frequency wave propagation problems. The absorption effects induced by the proton precipitations and X-ray flux are calculated according to the algorithm elaborated by Sauer and Wilkinson and D-region Absorption Model (D-RAP) available from the NOAA Space Weather Prediction Center. The simulated vertical and oblique ionograms with the absorption effects taken into account and the measured ionograms exhibit a fairly good similarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advances in Space Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.