Abstract

ABSTRACTAlthough cross‐laminated timber (CLT) plates are increasingly used in high‐performance building structures, a tailored composition of them or, at least, a performance‐based classification scheme is not available. Especially, the influence of the quality of the ‘raw’ material (wooden boards) on the load carrying capacity of CLT elements is hardly investigated yet. For this reason, within this work, bending tests on 24 CLT plates consisting of wooden boards from three different strength classes have been carried out. The global mechanical response as well as the formation of failure mechanisms were investigated, including a full‐field deformation measurement system, which allowed for a qualitatively as well as quantitatively identification of board failure modes. Interestingly, no influence of the board strength class on the elastic limit load of the CLT plates was observed, but the situation was different for the load displacement history beyond the elastic regime, where basically, two different global failure mechanisms could be distinguished. The obtained knowledge about the ‘post‐elastic’ behaviour of CLT plates may serve as a basis for the optimisation of CLT products and the development or improvement of design concepts, respectively. Moreover, the obtained large ‘post‐elastic’ capacity reserve of CLT consisting of high quality boards could lead to a better utilisation of the raw material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call