Abstract

In this study, Scots pine sapwood (Pinus sylvestris L.) and Douglas fir heartwood (Pseudotsuga menziesii Franco) specimens were exposed in double layer field trials at four different exposure sites and under different exposure conditions (in total ten test sets). The material climate of wood in terms of wood moisture content (MC) and wood temperature was automatically monitored over a period of 6 years and compared with the progress of decay. The aim of this study was to highlight the interrelationship between microclimate, material climate, and decay as a basis for the establishment of dose-response functions to be used for service life prediction of wood and wood-based products. Differences in resulting decay dynamics between the test sites as well as between the different types of exposure were quantified and discussed with respect to corresponding microclimatic and material climatic conditions. The time between the beginning of exposure and the first occurrence of visible decay varied between the sites and influenced the total decay development. The fundamental importance of direct decay factors, such as MC and wood temperature, were underlined and basic requirements for establishing dose-response-functions to be used in service life prediction models were derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call