Abstract

The introduction of wood chips into the market for small-scale heating appliances of below 100 kW has become more challenging due to stricter regulations on emission levels for carbon monoxide and particle emission, e.g. in Germany. Therefore, it is important to identify high wood chip qualities that are suitable for failure-free and low-emission combustion. In this investigation, several wood chip assortments produced from stem wood and forest residues were analysed and combusted in up to two different wood chip boilers with a nominal heat capacity of 50 and 99 kW at full load. Some combustion tests were performed at part load (i.e. 30% heat output). Throughout experiments, the emission behaviour was measured (CO, NOX and total particulate matter (TPM)). In total, seven different wood chip assortments were tested in the large boiler, whereas ten wood chip assortments were combusted in the smaller furnace. Wood chips from stem wood are characterized by lower ash contents (0.27–1.05 w%, d.b.), lower nitrogen contents (0.04–0.14 w%, d.b.) and lower aerosol forming elements (379–1075 mg/kg, d.b.) compared to forest residues (A = 0.58–2.05 w%¸ N = 0.13–0.32 w%, aerosols = 728–2199 mg/kg, d.b.). Combustion of stem wood caused lower emissions compared to forest residues at full-load operation. Overall, part-load operation caused higher CO and particle emissions. In addition, increases of fine woody particles lead to increases in CO emissions. The influence of moisture content was more pronounced especially for CO emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call