Abstract

The dielectric barrier discharge of helium in a 6 mm gap at atmospheric pressure was studied. In this paper, the influence of electric field distribution on the uniformity of DBD is analyzed theoretically and verified by experiments. The experimental results show that the mesh electrode produces a local enhancement effect by affecting the electric field and then produces corona discharge, which provides seed electrons for the subsequent discharge process. The effects of mesh diameter and size on discharge uniformity and stability are analyzed, the electrode structure parameters are optimized, the method of a segmented electrode is proposed, and the discharge process and charge distribution are studied. The electrical diagnosis results of plasma technology show that the segmented mesh electrode reduces the breakdown voltage of DBD and increases the charge deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.