Abstract

The relationships between large‐scale wintertime circulation and extratropical cyclones that develop explosively (the so‐called bomb cyclones) over the western North Pacific are investigated using Japanese long‐term reanalysis project data. On a monthly basis, the East Asian winter monsoon variability strongly modulates the bomb cyclone activity in terms of its geographical distribution. When the monsoon is strong, the bomb cyclone activity tends to concentrate in the vicinity of the Kuroshio Current and the Kuroshio Extension near Japan, while when the monsoon is weak, it disperses over the broader areas. The enhancement of the monsoon increases the heat and moisture supply from warm currents, facilitating unstable conditions within the atmospheric boundary layer and intensifying baroclinicity in the lower troposphere. These factors are believed to play a role in inducing bomb cyclones, particularly along the warm currents. On submonthly timescales, the stationary Rossby wave propagation along the South Asian waveguide serves as a prominent trigger for the rapid reinforcement of synoptic‐scale disturbances around Japan. When a pronounced bomb cyclone comes to its mature stage northeast of Japan, it is capable of exciting stationary Rossby waves downstream from the Asian jet exit region as vorticity forcing. The stationary wave packets developing southeastward across the North Pacific Ocean basin induce surface cyclogenesis in the vicinity of the Hawaiian Islands by leading to the equatorward advection of higher potential vorticity from the midlatitudes, bringing about the occurrence of kona storms, which cause weather hazards in Hawaii.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call