Abstract

Fires are a common feature of many landscapes, with numerous and complex ecological consequences. In stream ecosystems, fire can strongly influence fluvial geomorphic characteristics and riparian vegetation, which are structural components of stream–riparian ecosystems that contribute to biodiversity and ecosystem function. However, the effects of fire severity on stream–riparian ecosystems in California’s Sierra Nevada region (USA) are not well described, yet critical for effectively informing fire management and policy. At 12 stream reaches paired by fire severity (one high-severity burned, one low-severity burned), no significant differences were found in riparian plant community cover and composition or stream geomorphic characteristics 2–15 years following wildfire. In addition, minimal changes in riparian vegetation and stream geomorphic properties were observed in the first summer following the extensive and severe Rim Fire. However, an upstream-to-downstream influence of multiple fire occurrences was observed over the previous 81 years within each catchment on stream geomorphic metrics, including sediment size, embeddedness and channel geometry, at our study reaches. The inconsistent effects of wildfire on stream–riparian vegetation and geomorphic characteristics over space and time may be related to time since fire and precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call