Abstract

The strength and hydraulic conductivity of vertical cutoff walls consisting of reactive magnesia-activated ground granulated blast furnace slag (GGBS), bentonite, and soil (MSB) have been investigated in previous studies. However, there has been little comprehensive study of the influence of wet-dry cycles on the mechanical and microstructural properties of MSB backfills. In this paper, the durability of MSB backfills when exposed to wet-dry cycles is investigated. The variations in mass change, dry density, pH value, pore size distribution, and mineralogy are discussed. The results show that the mass change of ordinary Portland cement (OPC)-based and MSB backfills increases with respect to wet-dry cycles. The MSB backfills exhibit up to 8.2% higher mass change than OPC-based ones after 10 wet-dry cycles. The dry density, pH value, and unconfined compressive strength of MSB backfill decrease with the increasing number of wet-dry cycles. Increasing the GGBS-MgO content from 5% to 10% in MSB backfills results in 2.1–2.3 times higher strength, corresponding to a reduction of 2%–12% in cumulative pore volume; while increasing the bentonite content slightly reduces the strength of MSB mixtures, corresponding to an increase of cumulative pore volume by 4.6%–7.9%. The hydrotalcite-like phases and calcium silicate hydrate (C-S-H) are the primary hydration products in MSB backfills. Moreover, the continuous wet-dry cycles result in the precipitation of calcite and nesquehonite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.