Abstract

This paper investigates the influence of weld rotation stiffness on the global bifurcation buckling strength of laser-welded web-core sandwich plates. The study is carried out using two methods, the first is the equivalent single-layer theory approach solved analytically for simply supported plates and numerically for clamped plates. First-order shear deformation theory is used. The second method is the three-dimensional model of a sandwich plate solved with finite element method. Both approaches consider the weld through its rotation stiffness. The weld rotation stiffness affects the transverse shear stiffness. Plates are loaded in the web plate direction. Four different cross-sections are considered. Weld stiffness is taken from experimental results presented in the literature. The results show a maximum of 24% decrease in buckling strength. The strength was affected more in plates with high reduction of transverse shear stiffness and high bending stiffness. Furthermore, clamped plates were influenced more than simply supported. The intersection between buckling modes shifted towards higher aspect ratios, in the maximum case by 24%. The results show the importance of considering the deforming weld in buckling analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.