Abstract

Transition metal oxide (TMOs) layers have interesting properties as selective contacts for novel semiconductor devices. Especially, oxides of molybdenum (MoO3), vanadium (V2O5), and tungsten (WO3) show good behaviour acting as front hole-selective contacts for n-type crystalline silicon heterojunction solar cells. Laser scribing has been widely used for thin-film ablation and seems the appropriate technology for device manufacturing with such non-conventional materials. In this work, we study the laser scribing of non-stoichiometric evaporated WOx, VOx, and MoOx films with three different wavelengths (1064, 532, and 355 nm) with pulse duration in the ns and ps regimes. The selection of the proper laser source allows a wide parametric window, with complete removal of the TMO films and no alteration of the silicon substrate. The results on the isolation of diodes and their electrical characteristics show the quality of the laser scribing processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.