Abstract
AbstractCurrently it is standard practice to use Airy linear wave theory combined with Morison's formula for the calculation of fatigue loads for offshore wind turbines. However, offshore wind turbines are typically placed in relatively shallow water depths of 5–25 m where linear wave theory has limited accuracy and where ideally waves generated with the Navier–Stokes approach should be used. This article examines the differences in fatigue for some representative offshore wind turbines that are found if first‐order, second‐order and fully non‐linear waves are used. The offshore wind turbines near Blyth are located in an area where non‐linear wave effects are common. Measurements of these waves from the OWTES project are used to compare the different wave models with the real world in spectral form. Some attention is paid to whether the shape of a higher‐order wave height spectrum (modified JONSWAP) corresponds to reality for other places in the North Sea, and which values for the drag and inertia coefficients should be used. Copyright © 2004 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.