Abstract

In the industrial treatment of waste volatile organic compound (VOC) streams by membrane technology, a third impurity, generally, water vapor, coexists in the mixture of VOC and nitrogen or air, and can affect membrane performance and the design of the industrial process. This study focused on the investigation of the effect of water vapor on the separation performance of the separation of VOC/water/nitrogen mixtures by a polydimethylsiloxane (PDMS) membrane. Three types of VOCs: water-miscible ethanol, water-semi-miscible butanol, and water-immiscible cyclohexane, were selected for the study. Different operating parameters including, concentration of the feed VOC, feed temperature, and concentration of the feed water were compared for the separation of binary and ternary VOC/nitrogen mixtures. The interaction between the VOC and water was analyzed to explain the transportation mechanism after analyzing the difference in the membrane performance for the separation of binary and ternary mixtures. The results indicated that the interaction between the VOC (or nitrogen) and water is the key factor affecting membrane performance. Water can promote the permeation of hydrophilic VOC but prevent hydrophobic VOC through the membrane for the separation of ternary VOC/water/nitrogen mixtures. These results will provide fundamental insights for the design of the recovery application process for industrial membrane-based VOCs, and also guidance for the investigation of the separation mechanism in vapor permeation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call