Abstract

Influences of feeding gas compositions on the performance of co-planar, single chamber solid oxide fuel cells (SC-SOFCs) are investigated with emphasis on the role of water vapor. The maximum open circuit voltage (OCV) and peak power density are obtained at a methane-to-oxygen ratio of 3.5 under the wet gas condition, and a stoichiometric ratio of 2.0 for methane partial oxidation under the dry gas condition. In addition to the partial oxidation of methane on the anode and electrocatalytic reactions, both steam reforming and methane combustion occur on the anode and cathode, respectively, in the presence of water vapor. Local volume expansion and a rise in temperature associated with these parasitic reactions intensify inter-mixing of the reactant and product gases by which the OCV and power density drastically deteriorate with decreasing anode-to-cathode gap distance, as confirmed by impedance analysis for the LSM-YSZ|YSZ|LSM-YSZ symmetrical cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call