Abstract

Environmental parameters, such as food level and water temperature, have been shown to be major factors influencing pearl oyster shell growth and molecular mechanisms involved in this biomineralization process. The present study investigates the effect of food level (i.e., microalgal concentration) and water temperature, in laboratory controlled conditions, on the last stages of pearl mineralization in order to assess their impact on pearl quality. To this end, grafted pearl oysters were fed at different levels of food and subjected to different water temperatures one month prior to harvest to evaluate the effect of these factors on 1) pearl and shell deposition rate, 2) expression of genes involved in biomineralization in pearl sacs, 3) nacre ultrastructure (tablet thickness and number of tablets deposited per day) and 4) pearl quality traits. Our results revealed that high water temperature stimulates both shell and pearl deposition rates. However, low water temperature led to thinner nacre tablets, a lower number of tablets deposited per day and impacted pearl quality with better luster and fewer defects. Conversely, the two tested food level had no significant effects on shell and pearl growth, pearl nacre ultrastructure or pearl quality. However, one gene, Aspein, was significantly downregulated in high food levels. These results will be helpful for the pearl industry. A wise strategy to increase pearl quality would be to rear pearl oysters at a high water temperature to increase pearl growth and consequently pearl size; and to harvest pearls after a period of low water temperature to enhance luster and to reduce the number of defects.

Highlights

  • As in other mollusks, pearl oysters synthesize biomineralized structures, such as their shell, to maintain their soft tissues, and to prevent predation and desiccation [1]

  • The present study investigates the effect of food level and water temperature, in laboratory controlled conditions, on the last stages of pearl mineralization and on pearl quality

  • Mean shell deposition rate (SDR) and pearl deposition rate (PDR) were measured following calcein marking to analyze the effect of microalgal concentration and water temperature on shell and pearl growth during the last stages of pearl formation

Read more

Summary

Introduction

Pearl oysters synthesize biomineralized structures, such as their shell, to maintain their soft tissues, and to prevent predation and desiccation [1]. Shell biomineralization results from the activity of an organic matrix, mostly composed of polysaccharides, lipids. Impact of temperature and food level on pearl mineralization had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call