Abstract

The local structure of cellulose, dissolved in the frequently used ionic liquid EMIm-OAc, is modelled by a coaxial double layer cylinder. The cylinder’s core consists of a cellulose chain while the sheath is formed by a solvent layer with lower electron density than the bulk solvent. We studied 2% cellulose solutions in EMIm-OAc and their behavior upon addition of increasing amounts of water. At this cellulose concentration, 15 wt% of water induced the precipitation of cellulose. Water molecules did not form an independent phase, but were bound to EMIm-OAc in the cellulose/water/EMIm-OAc solution. The conformational of a cellulose chain changes by adding water into the solution, and the square of the apparent cross-sectional radius of gyration of the cellulose chain becomes zero to negative. This phenomenon is explained by the formation of a solvation shell with lower electron density than the bulk solvent around the cellulose chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.