Abstract
The influence of water on the dynamics of a room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2), and CO2 in the RTIL was studied in the bulk liquid and a supported ionic liquid membrane (SILM) using two-dimensional infrared (IR) and IR polarization selective pump-probe spectroscopies. In the water-saturated bulk EmimNTf2, the complete orientational randomization and structural spectral diffusion (SSD) of CO2 became faster than in the dry EmimNTf2. In the poly(ether sulfone) SILM, only the longer time components of the SSD became faster in the water-saturated RTIL; the complete orientational randomization remained similar to the dry RTIL in the SILM. The implication is that the presence of water in EmimNTf2 contained in the SILM facilitates the fluctuation of globally modified RTIL structure in the pores, but the local RTIL environments are relatively unaffected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.