Abstract

Oil-immersed power transformer plays an important role in power transmission and transformation engineering. Moisture is one of the important factors to determine its insulation performance. Molecular simulation technique is used to study the mechanism of water molecules on the micro polarization behavior of cellulose insulation materials. The number of hydrogen bonds, solubility parameters, total dipole moment and polarizability are analyzed. These characteristics explain the action mechanism of water molecules on cellulose insulation. At the same time, the time domain and frequency dielectric response of cellulose insulation materials with different moisture content are explored. The dielectric modulus spectrum is introduced to replace the traditional frequency dielectric spectroscopy to characterize the micro relaxation process of cellulose insulation under different moisture content. Finally, the characteristic parameters are extracted from the polarization, depolarization current and dielectric modulus spectrum curves to evaluate the moisture content of cellulose insulation materials. The results show that the number of hydrogen bonds, binding energy density, solubility parameter, total dipole moment and polarizability increase with the increase of water content. It should be noted that dielectric modulus spectroscopy can effectively characterize the relaxation behavior of cellulose insulation materials. The moisture content of cellulose insulation can be quantitatively evaluated by DC conductivity, insulation resistance, imaginary part relaxation peak of dielectric modulus and integral value of real part and imaginary part of dielectric modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.