Abstract

This study investigated the influence of water hardness (Mg2+ and Ca2+) on the fate and toxicity of 20 nm citrate silver nanoparticles (AgNPs) and Ag+ toward Nitrosomonas europaea, a model ammonia-oxidizing bacterium. Nitrification inhibition of N. europaea by 1 ppm AgNPs and 0.5 ppm Ag+ was reduced from 80% and 83%, respectively, in the absence of Mg2+ to 2% and 33%, respectively, in the presence of 730 μM Mg2+. Introduction of Mg2+ resulted in the rapid aggregation of the AgNP suspensions and reduced the 3 h Ag+ dissolution rates from 30%, in the absence of Mg2+, to 9%, in the presence of 730 μM Mg2+. Reduced AgNP dissolution rates resulted in decreased concentrations of silver that were found adsorbed to N. europaea cells. Increasing AgNP concentrations in the presence of Mg2+ increased the observed inhibition of nitrification, but was always less than what was observed in the absence of Mg2+. The presence of Mg2+ also reduced the adsorption of Ag+ to cells, possibly due to multiple mechanisms, including a reduction in the negative surface charge of the N. europaea membrane and a competition between Mg2+ and Ag+ for membrane binding sites and transport into the cells. Ca2+ demonstrated similar protection mechanisms, as Ag+ toxicity was reduced and AgNP suspensions aggregated and decreased their dissolution rates. These results indicate that the toxicity of Ag+ and AgNPs to nitrifying bacteria in wastewater treatment would be less pronounced in systems with hard water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call