Abstract

Laser paint removal in a water environment does not diffuse ablation pollution products into air. Characteristics of water, such as high specific heat and heat flux, generate different effects of the laser paint removal than in an air environment. In this study, the effects of air and water environments on the mechanism and effect of laser paint removal are analyzed and compared experimentally and theoretically. In air, thermodynamic ablation causes removal of paint, whereas in water, stress coupled with plasma shock waves cause tear and splash removal of paint layers after fracture and damage. Fracture and pressure thresholds of the paint and substrate, respectively, indicate the optimum energy density range for laser paint removal in water, providing a reference for engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.