Abstract

Two-dimensional (2D) models have become a well-established tool for channel flow, as well as rain-induced overland flow simulations. In channel flow simulations, slopes are usually less than a few percent and water depths are over several meters, while overland flow simulations show steep slopes and flow of a few centimeters. Despite these discrepancies, modelers transfer roughness coefficients, validated for channel flow, to overland flow. One purpose of this study is to verify whether roughness values from the literature are also valid for overland flow simulations. Laboratory experiments with different degrees of bed roughness, various discharges and a range of experimental flume slopes were carried out. For a given discharge, water depth was measured, and bed roughness was derived. Experimental results reveal that roughness shows no clear dependence on slope but is strongly dependent on water depth for vegetated surfaces. To verify the influence of different roughness approaches, they were implemented in a 2D model. A comparison of different simulation results indicates differences in the hydrograph. Here, consideration of water depth-related roughness coefficients leads to retention and translation effects. With the results of this study, modelers may enhance the precision of the hydraulic component in overland flow simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call