Abstract

In this study, we identified the influence of wastewater characteristics on the theoretical and practical methane potential using different food industrial wastewaters as substrates. Ten composite wastewater samples from five industries were investigated. The ultimate practical methane yields ( B o) were compared to the theoretical methane yields ( B o,th) in order to evaluate the biodegradability of the tested wastewaters and the influence of their physico-chemical characteristics. The analytical method applied to quantify the wastewaters’ organic content proved to influence the estimation of their theoretical yields. The substrate:inoculum ratio as well as the dilution factor of the wastewaters influenced the ultimate practical methane yields differently in each of the wastewaters assessed. Substrate chemical oxygen demand (COD) concentrations did not present any influence on ultimate practical methane yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected negatively the maximum achieved practical methane yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.