Abstract

The issue of the influence of wall vibrations on the behavior of wind instruments is still under debate. The mechanisms of vibroacoustic couplings involved in these vibrations are difficult to investigate, as fluid-structure interactions are weak. Among these vibroacoustic interactions, the present study is focused on the coupling between the internal acoustic field and the mechanical behavior of the duct. For this purpose, a simplified single reed instrument consisting of a brass tube connected to a clarinet mouthpiece has been studied. A theoretical model of coupling between the plane inner acoustic wave and mechanical modes is developed and suggests that in order to obtain measurable effects of wall vibrations, the geometrical parameters of the studied tube have to be unusual compared to that of real instruments. For a slightly oval-shaped and very thin brass tube, it is shown theoretically and experimentally that a coupling between the inner plane acoustic wave and ovalling mechanical modes occurs and results in disturbances of the input impedance, which can slightly affect the tone color of the sound produced. It is concluded that the reported effects are unlikely to occur in real instruments except for some organ pipes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.