Abstract

In fire engineering analysis, one of the open problem is the transfer of thermal parameters obtained by fire CFD model to FEM models for structural analysis. In this study the new useful concept of “Adiabatic Surface Temperature” or more commonly known as AST, introduced by Wickström, is investigated. The adiabatic surface temperature offers the opportunity to transfer both thermal information of the gas and the net heat flux to the solid phase model, obtained by CFD analysis.In this study two CFD analyses are carried out in order to evaluate the effect of emissivity and of convective heat transfer coefficient to determine the AST. First one CFD analysis simulating a fire scenario, “conjugate heat transfer”, with a square steel beam exposed to hot surface is carried out to calculate AST, heat convective coefficient and temperature field in the beam. Second one, a conductive analysis is carried out on “standalone beam” imposing a third type boundary condition on its boundaries assuming the AST, evaluated in the conjugate analysis, as external temperature. Different heat convective coefficients are imposed on the beam walls. The comparison between results obtained by means of the two proposed analyses shows the use of AST as transfer thermal parameter between CFD (Computational Fluid Dynamic) and FEM (Finite Element Method) models is appropriate when the convective heat transfer coefficient is properly evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call