Abstract

The influence of vocal fold cover layer thickness on the flow-induced vibration and voice production was studied by using a continuum-mechanics based computational model. The cover-body thickness ratio of a three-layer vocal fold was systematically varied. The effect on the vocal fold stiffness, eigenfrequencies and eigenmodes, fundamental frequencies, glottal flow rate, vocal fold vibratory dynamics, and synchronization of the eigenmodes were analyzed by using the structure eigen analysis and flow-structure interaction simulations. It was found that the cover-body layer thickness ratio significantly affected the strength and synchronization of the eigenmodes during flow-structure interactions, and ultimately affected the fundamental frequency and vibration pattern. With the increasing cover-body thickness ratio, the strength of the wave-type higher-eigenfrequency modes increased, and that resulted in a nonlinear bifurcation of the system in which the system evolved from a regular periodic vibration to a periodic doubling vibration and then back to a regular periodic vibration with increased fundamental frequencies. During the transition, the system vibrated chaotically. Because of the increased strength of the wave-type modes, the maximum divergent angle of the glottis was also increased with the increasing cover-body thickness ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.