Abstract
This paper aims to study the flow of a nanofluid in the presence of viscous dissipation in an oblique channel (nonparallel plane walls). For thermal conductivity of the nanofluid, the KKL model is utilized. Water is taken as the base fluid and it is assumed to be containing the solid nanoparticles of copper oxide. The appropriate set of partial differential equations is transformed into a self-similar system with the help of feasible similarity transformations. The solution of the model is obtained analytically and to ensure the validity of analytical solutions, numerically one is also calculated. The homotopy analysis method (HAM) and the Runge-Kutta numerical method (coupled with shooting techniques) have been employed for the said purpose. The influence of the different flow parameters in the model on velocity, thermal field, skin friction coefficient and local rate of heat transfer has been discussed with the help of graphs. Furthermore, graphical comparison between the local rate of heat transfer in regular fluids and nanofluids has been made which shows that in case of nanofluids, heat transfer is rapid as compared to regular fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.