Abstract

Urban geometry is known to be one of the major factors in explaining the intra-urban temperature variations. A commonly used indicator to describe the urban geometry is the sky view factor. However, the existing studies have shown that the relationship between SVF and urban temperature is quite contradictory. This suggests that a single SVF cannot accurately quantify the urban geometry. For comparison, we here propose to use view factors, including sky, building and tree view factors (SVF, BVF, and TVF, respectively), to accurately quantify the three-dimensional urban geometry. Based on microclimate measurements conducted in Beijing Olympic Park and its surrounding urban environment in Beijing, China, the impact of view factors on intra-urban air temperature and thermal comfort was evaluated. Measurements were conducted along a selected path during hot summer days with clear skies and light winds by mobile traverses. The obtained results showed that SVF was positively correlated with air temperature during the day but negatively correlated with air temperature at night. BVF mainly played a warming role in both daytime and nighttime. Especially at night, BVF was the main geometric warming factor. TVF had a significant cooling effect during the day but did not have a negative effect at night due to reduced SVF. There was a strong point-to-point correlation between SVF and outdoor thermal comfort in the daytime. The mean differences in Mean Radiant Temperature and Physiologically Equivalent Temperature between shaded and unshaded sites were 12.0 °C and 6.8 °C, respectively, which suggested that providing effective shading is extremely important for improving outdoor daytime thermal comfort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call