Abstract

We present an analytical and numerical stability analysis of Soret-driven convection in a porous cavity saturated by a binary fluid mixture and subjected to vertical high-frequency and small-amplitude vibrations. Two configurations have been considered and compared: an infinite horizontal layer and a bounded domain with a large aspect ratio. In both cases, the initial temperature gradient is produced by a constant uniform heat flux applied on the horizontal boundaries. A formulation using time-averaged equations is used. The linear stability of the equilibrium solution is carried out for various Soret separation ratios $$\varphi $$ , vibrational Rayleigh numbers Rv, Lewis numbers Le and normalized porosity. For an infinite horizontal layer, the critical Rayleigh number $$\mathrm{Ra}_c$$ is determined analytically. For a steady bifurcation to a one-cell solution (the critical wavenumber is zero), we obtain $$\mathrm{Ra}_{c}={12}/{({\varphi }(\mathrm{Le}+1)+1)}$$ for all Rv. When the bifurcation is a Hopf bifurcation or when the critical wavenumber is not zero, we use a Galerkin method to compute the critical values. Our study is completed by a nonlinear analysis of the bifurcation to one-cell solutions in an infinite horizontal layer that is compared to numerical simulations in bounded horizontal domains with large aspect ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.