Abstract

The influence of a transverse velocity shear on the Rayleigh‐Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh‐Taylor instability in the short wavelength regime (i.e., kL > 1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL < 1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100’s of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.