Abstract

Models of individual movement can help conserve wide-ranging carnivores on increasingly human-altered landscapes, and cannot be constructed solely by analyzing the daytime resting locations typically collected in carnivore studies. We examined the movements of 10 female and 7 male cougars (Puma concolor) at 15-min intervals during 44 nocturnal or diel periods of hunting or traveling in the Santa Ana Mountain Range of southern California, USA, between 1988 and 1992. Cougars tended to move in a meandering path (mean turning angle ∼54°), and distance moved (mean and mode ∼300 m) was not correlated with turning angle. Cougars used a broader range of habitats for nocturnal or diel movements than for previously described daybed locations for this same population. Riparian vegetation ranked highest in a compositional analysis of vegetation types selected during movement; grassland, woodland and urbanized sites were least selected. During periods of stasis (we presume many of these were stalking locations), patterns of selection were less marked. Cougars spent a disproportionate amount of time in highly ranked vegetation types, and traveled slowest through riparian habitats and fastest through human-dominated areas. Our results suggest that travel speed may provide an efficient index of habitat selection in concert with other types of analysis. Hunting or traveling individuals consistently used travel paths that were less rugged than their general surroundings. Traveling cougars avoided 2-lane paved roads, but dirt roads may have facilitated movement. Maintenance and restoration of corridors between large wildlands is essential to conserving cougars in southern California. Our results indicate that riparian vegetation, and other vegetation types that provide horizontal cover, are desirable features in such corridors, that dirt roads should not impede cougar use of corridors, and that corridors should lie along routes with relatively gentle topography. Our results suggest that cougars do not key in on highway-crossing structures in a way that creates a prey trap. Our empirical frequency distributions of distances and turning angles, along with cougar responses to vegetation, topography, and roads can help parameterize an individually-based movement model for cougars in human-altered landscapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call