Abstract
AbstractThe hydrophobic surface modification of chitosan membranes was performed using the amidating reaction of amino groups on a membrane surface with stearic acid activated by 1‐ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). The varying surface hydrophobicity of chitosan membranes was achieved by changing the degree of amidation and evaluated by the water contact angle analysis and the adsorption experiment of the hydrophobic dye, Rose Bengal. The effects of the surface hydrophobicity of chitosan membranes on the adsorption behaviors, activity and stability of Candida rugosa lipases were investigated. The experimental results suggested that the increased surface hydrophobicity of chitosan membranes improved the adsorption capacity and activity of the immobilized lipase. The modified chitosan membranes with 30.36% amidation exhibited the maximum activity retention of 83.87%. In addition, a desirable thermal stability was also achieved for the adsorbed lipase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.