Abstract

ABSTRACT The goal of this study is to thoroughly comprehend the advantages of rattan (Calamus beccarii) as potential reinforcement in polymeric composites. The influence of various chemical treatments on thermal, morphological, mechanical and water absorption characteristics of natural rattan (RA) stem fiber were investigated. In this research, RA fiber surface was modified through different chemical treatments such as alkalization, bleaching, and benzoylation. The presence of voids and rough surfaces was investigated on SEM micrographs which are due to removal of lignin, wax, and oils from the fiber surface to a large extent. The results obtained from Fourier transform infrared may indicate the presence of cellulose, hemicellulose, and lignin compounds in the case of untreated and treated RA fiber. The increase in tensile strength and Young’s modulus confirms improvement in the mechanical properties of the RA fiber after chemical treatment. It was observed that alkali-treated RA fibers exhibit highest mechanical properties (295.28 MPa tensile strength, 8.23 GPa Young’s modulus). Also, X-ray diffraction analysis gives a higher crystallinity index (62.50%) for treated RA fiber. Thermogravimetric analysis confirms that there was an increase in the thermal stability of the fiber after chemical treatment. Overall results confirm that the RA fiber is appropriate for use as a reinforcing phase in composite materials for prospective engineering semi-structural applications such as roofing sheets, bricks, door panels, furniture panels, interior paneling, storage tanks, and pipelines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call