Abstract

As a food hydrocolloid, flaxseed gum (FG) can significantly increase the water-holding capacity (WHC) of food, which is important to both yield and texture of related products. The main purpose of this study is to examine the WHC increase by FG in a meat product and the mechanism of the interactions between proteins and polysaccharides when FG is added into porcine myofibrillar protein (PMP). Increasing the FG concentration caused a significant increase in WHC (P<0.001). Scanning electron micrographs (SEM) showed that WHC in the protein gel network was related to gel microstructure. Distributed analysis of the T2 relaxation revealed that addition of FG significantly decreased water mobility of porcine myofibrillar protein (PMP) (P<0.05). The Fourier transform infrared spectroscopy (FT-IR) analysis suggested that the FG adding strengthened electrostatic attraction of PMP system. Improvement of WHC in heat-induced PMP by FG is concentration dependent and achieved by a finer gel network, lower relaxation time, and stronger electrostatic attraction. Flaxseed gum (FG) addition significantly increased water holding capacity (WHC) of porcine myofibrillar protein (PMP). In addition, the improvement of WHC in heat-induced PMP by FG was concentration dependent and achieved by a finer gel network, lower relaxation time, and stronger electrostatic attraction. Thus, FG has potential for use in meat products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call