Abstract

In this study, a pilot-scale low-temperature two-stage fluidized bed incinerator was evaluated for the control of heavy metal emissions using various chlorine (Cl) additives. Artificial waste containing heavy metals was selected to simulate municipal solid waste (MSW). Operating parameters considered included the first-stage combustion temperature, gas velocity, and different kinds of Cl additives. Results showed that the low-temperature two-stage fluidized bed reactor can be an effective system for the treatment of MSW because of its low NOx, CO, HCl, and heavy metal emissions. The NOx and HCl emissions could be decreased by 42% and 70%, respectively. Further, the results showed that heavy metal emissions were reduced by bed material adsorption and filtration in the second stage. Regarding the Cl addition, although the Cl addition would reduce the metal capture in the first-stage sand bed, but those emitted metals could be effectively captured by the filtration of second stage. No matter choose what kind of additive, metal emissions in the low-temperature two-stage system are still lower than in a traditional high-temperature one-stage system. The results also showed that metal emissions depend not only on the combustion temperature but also on the physicochemical properties of the different metal species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call