Abstract

In this paper, the problem of boundary layer flow and heat transfer of MHD power-law fluid over a porous sheet in the presence of partial slip is investigated numerically. We assume a temperature dependent thermal conductivity and slip conditions are employed in terms of shear stress. The suitable similarity transformations are used, to transform the governing partial dif- ferential equations (PDEs) into a system of nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is solved numerically using Matlab bvp4c solver. The numerical values obtained for the velocity and temperature depend on power-law index, slip parameters, permeability, suction/injection parameter, Prandlt number and Nusselt number. The effects of various parameters on the flow and heat transfer characteristics are presented through graphs and tables and discussed from physical point of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call