Abstract

Abstract The thermo-diffusion applications of nanofluid subject to variable thermal sources have been presented. The significance of Darcy–Forchheimer effects is attributed. The flow comprises the mixed convection and viscous dissipation effects. Furthermore, the variable influence of viscosity, thermal conductivity, and mass diffusivity is treated to analyze the flow. The analysis of problem is referred to convective mass and thermal constraints. The analytical simulations are proceeded with homotopy analysis method. The convergence region is highlighted. Novel physical contribution of parameters is visualized and treated graphically. It is noted that larger Brinkman number leads to improvement in heat transfer. The concentration pattern boosted due to Soret number. The wall shear force enhances with Hartmann number and variable thermal conductivity coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call