Abstract

The vanadium air redox flow battery is a combination of a redox flow battery and a reversible fuel cell. For the oxygen reduction during discharge, platinum (Pt) catalysts are common. During operation, vanadium (V) cations can penetrate through a proton exchange membrane into the water/air half-cell. The aim of the present work is to study whether V compounds are deposited on the Pt surface under operation conditions or whether the V ions influence the stability of Pt in any other way. Thereby, bulk platinum electrodes are compared as a simple model system to carbon-supported Pt nanoparticles via cyclic voltammetry. In the case of bulk platinum, electrochemical quartz crystal microbalance measurements showed no deposition of vanadium compounds but indicated the decrease of the (hydr)oxide layer on Pt above V3+ and VO2+ redox potentials. Cycling 100 times between oxygen reduction and oxygen evolution potentials with and without a heavy V contamination did not lead to significant degradation of the model catalyst and shows no influence of V ions. On the contrary, the nanoparticle-based catalyst significantly degraded during the same stability protocol. The V contamination lowered the degradation in this case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call